OUT OF MIND
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Latest topics
» Is it possible to apply positive + in favor Newton III Motion Law as a dynamic system in a motor engine
When black holes and neutron stars collide  EmptySat Mar 23, 2024 11:33 pm by globalturbo

» Meta 1 Coin Scam Update - Robert Dunlop Arrested
When black holes and neutron stars collide  EmptySat Mar 23, 2024 12:14 am by RamblerNash

» As We Navigate Debs Passing
When black holes and neutron stars collide  EmptyMon Jan 08, 2024 6:18 pm by Ponee

» 10/7 — Much More Dangerous & Diabolical Than Anyone Knows
When black holes and neutron stars collide  EmptyThu Nov 02, 2023 8:30 pm by KennyL

» Sundays and Deb.....
When black holes and neutron stars collide  EmptySun Oct 01, 2023 9:11 pm by NanneeRose

» African Official Exposes Bill Gates’ Depopulation Agenda: ‘My Country Is Not Your Laboratory’
When black holes and neutron stars collide  EmptyThu Sep 21, 2023 4:39 am by NanneeRose

» DEBS HEALTH
When black holes and neutron stars collide  EmptySun Sep 03, 2023 10:23 am by ANENRO

» Attorney Reveals the “Exculpatory” Evidence Jack Smith Possesses that Exonerates President Trump
When black holes and neutron stars collide  EmptyTue Aug 29, 2023 10:48 am by ANENRO

» Update From Site Owner to Members & Guests
When black holes and neutron stars collide  EmptyTue Aug 29, 2023 10:47 am by ANENRO

» New global internet censorship began today
When black holes and neutron stars collide  EmptyMon Aug 21, 2023 9:25 am by NanneeRose

» Alienated from reality
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 4:29 pm by PurpleSkyz

» Why does Russia now believe that Covid-19 was a US-created bioweapon?
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 4:27 pm by PurpleSkyz

»  Man reports history of interaction with seemingly intelligent orbs
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:34 pm by PurpleSkyz

» Western reactions to the controversial Benin Bronzes
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:29 pm by PurpleSkyz

» India unveils first images from Moon mission
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:27 pm by PurpleSkyz

» Scientists achieve nuclear fusion net energy gain for second time
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:25 pm by PurpleSkyz

» Putin Signals 5G Ban
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:07 pm by PurpleSkyz

» “Texas Student Dies in Car Accident — Discovers Life after Death”
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:05 pm by PurpleSkyz

» The hidden history taught by secret societies
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:03 pm by PurpleSkyz

» Vaccines and SIDS (Crib Death)
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 3:00 pm by PurpleSkyz

» Sun blasts out highest-energy radiation ever recorded, raising questions for solar physics
When black holes and neutron stars collide  EmptyMon Aug 07, 2023 2:29 pm by PurpleSkyz

» Why you should be eating more porcini mushrooms
When black holes and neutron stars collide  EmptySun Aug 06, 2023 10:38 am by PurpleSkyz


You are not connected. Please login or register

When black holes and neutron stars collide

Go down  Message [Page 1 of 1]

PurpleSkyz

PurpleSkyz
Admin

When black holes and neutron stars collide

Posted on Sunday, 4 July, 2021



When black holes and neutron stars collide  News-neutron-black-hole


The effects of such a collision can be felt even on Earth. Image Credit: NASA / Swift / Dana Berry
Exactly what happens when a black hole collides with one of the most dense stars in the known universe ?
For the first time, a faint signal caused by the merging of two almost equally mysterious objects - a black hole and a neutron star - has been recorded on Earth.

On January 5 2020, when the world was first learning of the COVID-19 outbreak, gravitational waves from this merging reached the Livingston detector of the Laser Interferometer Gravitational-wave Observatory (Ligo) gravitational wave observatory in Louisiana, US.

On January 15, the second gravitational wave event from a merger between a black hole and a neutron star, the densest stars in the universe, was discovered.

These two recordings are the first mergers between a black hole and a neutron star to have been detected on Earth. Black hole-neutron star binary systems, where a black hole and a neutron star orbit each other, had been predicted but never observed - until now.

Gravitational waves are distortions in space-time, predicted by Albert Einstein's general theory of relativity.

In a gravitational wave observatory, the distance between two suspended mirrors is measured with a laser. The measurement technique relies on the overlap of reflected laser light within the experiment. Two light waves are arranged so that the signals cancel each other out exactly. Changing the distance between the mirrors by even a tiny fraction of a wavelength produces a measurable light signal.

The basic idea behind the theory of relativity is that space itself possesses a kind of elastic structure, even in the absence of any matter. Similar to an inflated balloon, you can squeeze it one way and it expands in the perpendicular direction.

Relativity predicts that matter warps space (and time) and a collision between two compact objects like a black hole and a neutron star rapidly changes the compression and relaxation of the space in the vicinity of the objects. Waves of periodic compression and expansion are emitted. The way to measure these waves is to monitor the distance between two otherwise fixed objects, because the gravitational wave will periodically change the extent of the space between these objects, as it passes.

During the first ever detected gravitational wave event in 2015, for which three physicists were awarded the Nobel prize in 2017, the distances between the mirrors in the two stations of the LIGO observatory, which are 4km (2.5 miles) apart, changed by about a thousandth of a trillionth of a millimetre.

The merger detected in 2015 was between two comparatively massive black holes, each around 30 times the mass of the Sun. Since then, the sensitivity of the instrument has been improved. Now also a smaller, less sensitive, gravitational wave observatory in Italy, called the Virgo experiment, is frequently used as part of the telescope network.

In the new discoveries, the merging objects each had less than ten times the mass of the Sun. The event on January 5 involved objects with respective masses of 8.9 and 1.9 times the mass of the Sun, and the merger on January 15 was between objects with 5.7 and a 1.5 times the mass of the Sun.

Neutron stars

It's important that the smaller masses were below 2.2 times the mass of the Sun, because this suggests these objects were neutron stars. Neutron stars are so dense that an amount of matter comparable to the solar system is compressed to a diameter of about 20km.

The matter in a neutron star is so dense that atoms get crushed, resulting in the formation of neutrons. The strong gravity on their surface makes them, in their own right, interesting laboratories to study effects of general relativity.

When a neutron star becomes even more massive, for example when some interstellar gas falls on it, the nuclear forces can no longer resist gravity and the star collapses to a black hole, an object so compact that not even light can resist its gravitational pull.

Neutron stars and black holes are not that rare in the Milky Way. They are a common outcome from the evolution of stars significantly more massive than the Sun. Such massive stars often occur in binary systems, with two stars orbiting each other.

It's not surprising to find neutron stars and black holes in binary systems, where they are locked in a gravitational dance. Such binaries emit gravitational waves for their entire lifetime.

Binary systems

The energy for the gravitational waves comes from the motion of the objects around each other. As the system emits gravitational waves, the objects get closer together. This makes the gravitational wave emission increase and, finally, the two merge into a new, bigger black hole, with a burst of gravitational wave emission. This is what is detectable on Earth.

While it was expected that neutron star-black hole systems existed, we'd never been able to spot them before. Neutron stars emit radio and X-ray emissions, which can now be routinely detected. Other than looking for gravitational waves, black holes can only be observed when something falls on them - a star or interstellar gas, for example.

If a black hole has a normal star companion, it can capture mass from the companion which emits X-rays before it disappears into the black hole. Binary black holes have no obvious source of gas, and they're known only from gravitational wave experiments.

A neutron star-black hole system could in principle be discovered with radio telescopes, but - so far - the search has not been successful. This new discovery provides important information about the astrophysics of such systems.

More discoveries will surely be made, which will help to improve our understanding of what is inside neutron stars and black holes - and quite possibly also provide new tests, or proofs, of the theory of relativity.

Martin Krause, Senior Lecturer, University of Hertfordshire

This article is republished from The Conversation under a Creative Commons license.

Read the original article. When black holes and neutron stars collide  Count

Source: The Conversation

https://www.unexplained-mysteries.com/news/348374/when-black-holes-and-neutron-stars-collide
Thanks to: https://www.unexplained-mysteries.com

Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum