OUT OF MIND
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Latest topics
» Is it possible to apply positive + in favor Newton III Motion Law as a dynamic system in a motor engine
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptySat Mar 23, 2024 11:33 pm by globalturbo

» Meta 1 Coin Scam Update - Robert Dunlop Arrested
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptySat Mar 23, 2024 12:14 am by RamblerNash

» As We Navigate Debs Passing
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Jan 08, 2024 6:18 pm by Ponee

» 10/7 — Much More Dangerous & Diabolical Than Anyone Knows
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyThu Nov 02, 2023 8:30 pm by KennyL

» Sundays and Deb.....
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptySun Oct 01, 2023 9:11 pm by NanneeRose

» African Official Exposes Bill Gates’ Depopulation Agenda: ‘My Country Is Not Your Laboratory’
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyThu Sep 21, 2023 4:39 am by NanneeRose

» DEBS HEALTH
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptySun Sep 03, 2023 10:23 am by ANENRO

» Attorney Reveals the “Exculpatory” Evidence Jack Smith Possesses that Exonerates President Trump
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyTue Aug 29, 2023 10:48 am by ANENRO

» Update From Site Owner to Members & Guests
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyTue Aug 29, 2023 10:47 am by ANENRO

» New global internet censorship began today
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 21, 2023 9:25 am by NanneeRose

» Alienated from reality
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 4:29 pm by PurpleSkyz

» Why does Russia now believe that Covid-19 was a US-created bioweapon?
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 4:27 pm by PurpleSkyz

»  Man reports history of interaction with seemingly intelligent orbs
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:34 pm by PurpleSkyz

» Western reactions to the controversial Benin Bronzes
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:29 pm by PurpleSkyz

» India unveils first images from Moon mission
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:27 pm by PurpleSkyz

» Scientists achieve nuclear fusion net energy gain for second time
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:25 pm by PurpleSkyz

» Putin Signals 5G Ban
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:07 pm by PurpleSkyz

» “Texas Student Dies in Car Accident — Discovers Life after Death”
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:05 pm by PurpleSkyz

» The hidden history taught by secret societies
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:03 pm by PurpleSkyz

» Vaccines and SIDS (Crib Death)
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 3:00 pm by PurpleSkyz

» Sun blasts out highest-energy radiation ever recorded, raising questions for solar physics
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptyMon Aug 07, 2023 2:29 pm by PurpleSkyz

» Why you should be eating more porcini mushrooms
‘Spooky’ quantum-entanglement experiments win physics Nobel EmptySun Aug 06, 2023 10:38 am by PurpleSkyz


You are not connected. Please login or register

‘Spooky’ quantum-entanglement experiments win physics Nobel

Go down  Message [Page 1 of 1]

PurpleSkyz

PurpleSkyz
Admin

‘Spooky’ quantum-entanglement experiments win physics Nobel
October 6, 2022 Journal of People Peasants and WorkersLeave a comment

Davide Castelvecchi & Elizabeth Gibney

Nature | October 04, 2022


‘Spooky’ quantum-entanglement experiments win physics Nobel Image-1

John Clauser (left), Anton Zeilinger and Alain Aspect have won this year’s Nobel physics prize for their research on quantum entanglement.Credit: J. Clauser (CC BY-SA 4.0), Matthias Röder/dpa/Alamy, The Royal Society (CC BY-SA 3.0)

Three quantum physicists have won the 2022 Nobel Prize in Physics for their experiments with entangled photons, in which particles of light become inextricably linked. Such experiments have laid the foundations for an abundance of quantum technologies, including quantum computers and communications.
Alain Aspect, John Clauser and Anton Zeilinger will each share one-third of the 10-million-kronor (US$915,000) prize.
“I was actually very surprised to get the call,” said Zeilinger, a physicist at the University of Vienna, at the press conference announcing the award. “This prize would not be possible without the work of more than 100 young people over the years.”

Aspect, a physicist at the University of Paris-Saclay, received the call during a committee meeting. “I happened to be sitting near Aspect this morning when he got the call,” says Serge Haroche, an experimental physicist at the Collège de France in Paris who shared the 2012 Nobel Prize in Physics for work in quantum physics. When he left the room, Haroche added, Aspect’s colleagues guessed correctly that it was Stockholm calling.
The trio’s experiments proved that connections between quantum particles were not down to local ‘hidden variables’, unknown factors that invisibly tie the two outcomes together. Instead, the phenomenon comes from a genuine association in which manipulating one quantum object affects another far away. German physicist Albert Einstein famously called the phenomenon ‘spooky action at a distance’ — it is now known as quantum entanglement.
All three winners are pioneers of the fields of quantum information and quantum communications, says Pan Jianwei, a physicist at the University of Science and Technology of China in Hefei who participated in some of Zeilinger’s landmark experiments as a graduate student in the 1990s. The recognition was long overdue, Pan says. “We have been waiting for this for a very, very long time.”
The win is “beautiful news” agrees Chiara Marletto, a theoretical physicist at the University of Oxford, UK. The modern versions of the experiments pioneered by the three winners could be central to one of the great open questions of physics today, she says — how to reconcile quantum mechanics with Einstein’s general theory of relativity.

Particle pairs

Because of the effects of quantum entanglement, measuring the property of one particle in an entangled pair immediately affects the results of measurements on the other. It is what enables quantum computers to function: these machines, which seek to harness quantum particles’ ability to exist in more than one state at once, carry out calculations that would be impossible on a conventional computer. Today, physicists are using entanglement to develop quantum encryption and a quantum internet that would allow for ultrasecure communications and new kinds of sensors and telescopes.
But whether particles could be fundamentally linked in this way — such that measuring one determines the properties of another, rather than just revealing a predetermined state — had been a topic of debate since physicists laid the foundations of quantum mechanics in the 1920s.
In the 1960s, physicist John Bell proposed a mathematical test, known as Bell’s inequality, to distinguish between the two ideas. This test said that experimental results that seemed to be correlated beyond a particular value would be possible only through quantum entanglement, rather than being due to certain kinds of hidden variables. Quantum mechanics predicts a higher degree of correlation than would be possible in classical, or pre-quantum, physics.
In 1972, John Clauser — now a physicist at J.F. Clauser & Associates in Walnut Creek, California — and his colleagues developed these ideas into a practical experiment that violated the Bell inequality, supporting the theories of quantum mechanics.
David Kaiser, a quantum physicist and historian of science at the Massachusetts Institute of Technology in Cambridge, says that Clauser had come across Bell’s work by chance while browsing in the library at Columbia University in New York City, where he was a PhD student. Clauser was captivated, and he wrote to Bell to ask him whether anyone had tried testing his inequalities experimentally. Bell replied that no one had — and encouraged him to do so. The reaction from the rest of the community wasn’t as warm, however. “People would say, in writing, that this isn’t real physics — that the topic isn’t worthy,” says Kaiser.

Loopholes and teleportation

Despite Clauser’s success, experimental loopholes remained that left room for hidden variables to create the illusion of quantum entanglement. It was these loopholes that Aspect set out to close in the 1980s. His experiments used a changing set-up that meant that experimental decisions could not be said to be predetermining the results.
And in 1997, Zeilinger and his colleagues at the University of Vienna used the phenomenon of entanglement to demonstrate quantum teleportation, in which a quantum state gets transmitted from one location to another. Quantum systems cannot be detected and reconstituted somewhere else, because measurement destroys their delicate quantum properties. But a state can be transferred between two particles at a distance, if each is entangled with half of a previously entangled pair.
Teleportation allows for supersecure communications, because any eavesdropping would cause particles to lose their delicate quantum states. It might also enable future quantum computers to transfer information. Since Zeilinger’s initial experiments, physicists have succeeded in teleporting electrons, as well as atoms and superconducting circuits.
In more recent experiments, Zeilinger, together with Kaiser and other collaborators, have sought to seal further loopholes in tests of Bell’s inequality by using properties of starlight emitted billions of years ago to define experimental settings.
Although the physics is now the basis of a budding industry, these kinds of experiment could continue to provide insights into fundamental physics. One hope, says Marletto, is that they will show whether two particles can become entangled through a gravitational interaction. General relativity is apparently incompatible with quantum mechanics, and such experiments could provide hints on how to develop a quantum theory of gravity to replace it. “Gravity is the elephant in the room,” says Marletto.
Zeilinger “often anticipated the strangest and most counterintuitive phenomena” in quantum physics, says Gabriela Barreto Lemos, a physicist at the Federal University of Rio de Janeiro in Brazil, who recalls warmly her time as a postdoctoral researcher in Zeilinger’s lab. “Whenever we presented him with new ideas, he would challenge us to go further, think more outside the box, be more imaginative,” she says.
Kaiser credits the three Nobel recipients for having had the persistence and ingenuity to probe what seem like “fantastical” phenomena, and to ask: “Can the world really work like this?”
“At the time it was just blue-sky research, with no applications in view,” says Haroche. “It’s a wonderful example of the connection between basic science and application,” he adds. “A demonstration of the usefulness of useless knowledge.”
doi: https://doi.org/10.1038/d41586-022-03088-7

SOURCE: https://www.nature.com/articles/d41586-022-03088-7?utm_source=Nature+Briefing&utm_campaign=bda244ac1a-briefing-dy-20221004&utm_medium=email&utm_term=0_c9dfd39373-bda244ac1a-45531014


https://journalworker.wordpress.com/2022/10/06/spooky-quantum-entanglement-experiments-win-physics-nobel/
Thanks to: https://journalworker.wordpress.com

Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum